REVIEW

Posterior epidural migration of herniated lumbar disc fragment: a literature review

Alaa Eldin Elsharkawy^{1,2} • Anne Hagemann³ • Peter Douglas Klassen¹

Received: 1 July 2018 / Revised: 3 December 2018 / Accepted: 4 December 2018 © Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract

Herniated disc fragments' migration to posterior epidural locations is a very rare pathological condition, and the mechanism is not well understood. Posterior epidural migration may lead to serious neurologic problems; however, its diagnosis and treatment are challenging. We searched PubMed and Google Scholar, using various keyword combinations, and found 111 cases of posterior epidural disc migration in the lumbar region reported between 1973 and 2018. There were 89 (80.2%) men and 22 (19.8%) women. The mean age at surgery was 54.05 years (range, 26-83 years); the mean duration of complaints was 26.3 days. The locations were at the L3–L4 level in 41 cases (36.9%), the L4–L5 level in 37 (33.3%), the L2–L3 level in 21 (18.9%), the L5–S1 level in 8 (7.2%), and the L1–L2 in 4 (3.6%). The disc fragment appeared as hypointense and isointense in 60.3% and 33.8%, respectively, of cases in T1-weighted magnetic resonance imaging (MRI) and as hyperintense in 68.5% of cases on T2-weighted MRI. The initial symptoms were cauda equina syndrome, radiculopathy, and low back pain in 58 (52.2%), 52 (46.8%), and 12 (10.8%) patients, respectively. In addition, 107 patients (96.4%) underwent surgical treatment and 4 (3.6%) underwent conservative treatments, with total recovery, and subtotal recovery in 73 (65.8%), and 38 (34.2%), respectively. We found significant differences between patients at different ages with regard to the level of disc herniation ($\eta = 0.405$, p = .001): patients with a higher level of disc herniation were, on average, older. There was no significant difference in outcome between male and female patients, $\chi^2(1) = 0.591$, p = .469, or between patients with upper and lower lumbar spine, $\chi^2(1) = 0.027$, p > .999. Careful history documentation, clinical examinations, and contrast material-enhanced MRI with laboratory tests could help reveal herniated disc fragment and rule out several other pathological processes. In most cases, surgical treatment produced favorable outcomes.

Keywords Lumbar disc herniation · Disc fragment · Dorsal epidural

Introduction

Degenerative disc disease and its sequelae are common health problems [100]. The strong annulus fibrosis keeps the nuclear material inside the intervertebral spaces. Degenerative changes of the annulus may cause it to bulge or the nuclear material to herniate into the spinal canal [15]. Herniation (protrusion

³ Department of Psychology, Bielefeld University, Bielefeld, Germany

and extrusion) is defined as a localized displacement of disc material beyond the intervertebral disc space limits [31]. Extrusion of displaced disc material, which has completely lost any continuity with the parent disc, is defined as sequestration [22, 31]. According to Fardon et al., "The term migration may be used to signify displacement of disc material away from the site of extrusion, regardless of whether sequestrated or not" [31].

Disc sequestration accounts for about 28.6% of all disc herniations [93]. Herniated disc fragments migrate in all directions in the spinal canal; caudal and paracentral displacements are the most common patterns [18, 72].

The posterior epidural migration is a very rare pathological entity. Posterior epidural disc fragments were first reported in 1973 [66], but the reasons why disc fragments migrate posteriorly are not well understood. Posterior epidural migration may lead to serious neurological problems; however, it is difficult to diagnose and to treat.

Alaa Eldin Elsharkawy alaa.elsharkawy@icould.com; alaa-eldin.elsharkawy@hospitallingen.de

Department of Neurosurgery, Bonifatius Hospital, Wilhelmstr. 13, 49808 Lingen, Germany

² Neurosurgery Teaching Program, Traditional Medicine University, Yerevan, Armenia

Despite its importance, no large comprehensive studies of this type of migration have been reported. Only case reports and few case series are found in the literature [18, 28, 72]. Our aim is to review what is currently known about the pathophysiological features and treatment of posterior epidural migration.

Patients and methods

We performed PubMed and Google scholar searches using various combinations of keywords, including "posterior epidural migration of sequestered disc," "disc sequestration" "disc fragment," and "case report of unusual disc migration." Case reports of thoracic (6 cases) and cervical migration (3 cases) were excluded from this review. One Spanish case report was included because Spanish is the first language of the senior author of this article.

We reviewed all case reports about posterior migration of disc fragments, including those that were parts of case series that contained complete information about the position of disc fragments, clinical presentation, treatment, and outcome. Cases with incomplete data and with mainly dorsolateral disc fragment were excluded. We identified 120 papers, 111 of which were found to meet the study inclusion criteria. All cases are described in Table 1.

To compare outcomes between subgroups of patients, we used χ^2 tests. Coefficient η was used to describe the association between age and the level of disc herniation.

Results

We found 111 cases of posterior epidural disc displacement in the lumbar region reported between 1973 and 2018. Of the affected patients, 89 (80.2%) were men and 22 (19.8%) were women. The mean age at surgery was 54.05 years (range, 26– 83 years); the mean duration of symptoms was 26.3 days (range, 0.25–300 days). (Cases of chronic low back pain lasting years and of acute pain of unknown duration were not included.)

The locations were at the L3–L4 level in 41 cases (36.9%), the L4–L5 level in 37 (33.3%), the L2–L3 level in 21 (18.9%), the L5–S1 level in 8 (7.2%), and the L1–L2 level in 4 (3.6%).

Magnetic resonance imaging (MRI) was performed in 95 patients (85.6%), computed tomographic (CT) scanning in 30 patients (27%), and CT and magnetic resonance myelography in 12 patients (10.8%). Ring enhancement was reported in 98.1% of patients who underwent imaging with contrast material. Disc fragments appeared as hypointense and isointense in 60.3% and 33.8% of cases, respectively, on T1-weighted MRI and as hyperintense in 68.5% of cases on T2-weighted MRI. Discography was performed in one case.

The presenting symptoms were cauda equina syndrome, radiculopathy, and low back pain (LBP) in 58 (52.2%), 52 (46.8%), and 12 (10.8%) cases, respectively. A history of trauma or lifting a heavy object was reported by 17 patients (15.3%). In addition, 107 patients (96.4%) underwent surgical treatment and 4 (3.6%) underwent conservative treatment; to-tal recovery was achieved in 73 (65.8%) and subtotal recovery in 38 (34.2%). Of the surgical patients, 62 (57.9%) underwent laminectomy, 8 (7.4%) underwent multilevel laminectomy, and 7 patients (6.5%) underwent laminectomy plus fusion, additional discectomy underwent in 36 (33.6%). Details about the type of surgery and outcome are listed in Table 2.

Although posterior epidural migration was reported more often in male patients and in the upper lumbar spine (L1–L2, L2–L3, L3–L4), there was no difference in outcome between male and female patients, $\chi^2(1) = 0.591$, p = .469, or between those with affected upper and lower lumbar spine, $\chi^2(1) = 0.027$, p > .999. There were significant differences between patients of different ages with regard to the level of disc herniation ($\eta = 0.405$, p = .001): patients with a higher level of disc herniation were, on average, older (Tables 3, 4, and 5).

Discussion

Natural history and epidemiology of dorsal disc migration

Dorsal disc herniation is a very rare pathological entity. Most affected patients present clinically with serious pain or a neurological disorder and receive treatment, which makes it difficult to study the natural history. Furthermore, there are no data regarding disc posterior migration among nonsurgical patients and healthy individuals. Moreover, among surgical patients, an unusual disc migration is generally rare; Nievas et al. [80] reported an incidence of 0.4% among 3000 patients. In the case of posterior migration, study results varied greatly: Sengoz et al. [98] reported an incidence of 0.27%, Kahn et al. [51] reported 0.9%, and Akhaddar et al. [4] reported 1.04%. In most cases, the posterior migration site was at the L3–L4 level (75%) and the L4–L5 level (25%) [98].

The natural history of typical disc herniation is well studied; in most cases, it resolves and heals spontaneously [17]. Researchers have reported effective reduction and spontaneous absorption of typical disc sequestrations in 43 to 88% of affected patients and extruded discs with complete resolution in approximately 15% [14, 101].

Moreover, risk factors for posterior disc herniation are unknown and have been not studied. According to our review, 17 patients (15.3%) had a history of lifting heavy loads or other hard work. Previous studies showed that in case of usual disc herniation, occupational factors, such as heavy physical loading, may accelerate spinal degeneration and its sequelae

Reference and years	Age	Sex	Level	Radiology	Duration	Clinical presentation	Surgery	Outcome
Lombardi 1973 [66]	58	М	L2-3	Myelogram	2 years	CES	L+E	Full recovery
1	54	М	L4-5	Myelogram	2 months	RP	L + E	Full recovery
Lichtor 1989 [64]	61	Σ	L2-3	CT + myelo/MRI	I month	RP/LBP	L + E	Full recovery
Lutz et al. 1990 [67]	30	Σ	L4-5	CT + myelo	5 days	CES	L + E	Full recovery
Hirabayashi et al. 1990 [40]	58	Z	L3-4	MRI, CT + myelo	4.5 months	CES	L+E	Improvement
Sekerci 1992 [95]	58	ZŽ	L3-4 1 4 5	Myelogram	2 months	CES PD T PD	L+Е - Е	Improvement
Bonaroti and Welch 1998 [9]	515	ΞΣ		MRI	10 weeks	CFS	L + E 2 level I + F + discectomy	Immovement
Hodges et al. 1999 [41]	56	ΞΣ	L4-5	MRI	7 davs	LBP	Z IXVII I T I T MAXXVIII) L + E	Full recovery
Rohe 1999 [88]	68	Σ	13-4	MRI MVI, CT	Acute	RP	I + E + discectomy	Full recovery
	41	Ец	L3-4		14	CES	L + E + discectomy	Full recovery
Neugroschl 1999 [78]	57	Μ	L2-3	CT + myelo + MRI	15 days	RP, LBP	2 level L + facetectomy discectomy	Full recovery
	64	М	L2–3	CT + myelo + MRI	14 days	RP	Bilateral $L + E$	Full recovery
Saruhashi et al. 1999 [92]	44	ц	L5–S1	CT + myelo + MRI	1 month	RP	L + E	Full recovery
Lisai et al. 2000 [65]	63	M	L3-4	MRI	12 h	CES	L + facetectomy discectomy	Full recovery
Dosoglu et al. 2001 [22]	47	M	L3-4	MRI	15 days	CES	Fenestration discectomy	Full recovery
Sen et al. 2001 [96]	36	M	L4-5	MRI	10 h	CES	L + discectomy bilateral	Full recovery
Eysel 2001 [30]	4 c 2 t	Σı	L3-4	MRI + CT	8 weeks	CES	L + E E	Full recovery
	41 7	_ ∑	1.4-0 4-6.1	CT	/ weeks 11 weeks	I RP		Full recovery
Senel 2003 [97]	44	ΞΣ	L3-4	MRI	5 davs	LBP	PHL + E	Full recovery
Kuzeyli 2003 [59]	47	ц	L2-3	MRI	4 months	CES	HL + E	Full recovery
1	62	ц	L1–2	MRI + CT	25 days	CES	HL + E	Full recovery
	49	М	L4-5	MRI	15 days	LBP	L + E	Full recovery
Kim 2003 [53]	60	щ	L3-4	MRI	4 days	RP/CES	2 level L + E	Subtotal recovery
Kim 2004 [54] Welst 2004 [114]	4 4 2	ZŽ	14-0 2 2 2	CT	6 h 31 h	CES	L + E 2 ^{[21:1}] I - E	Subtotal recovery
Walsh 2004 [114] Tafi 2005 [105]	70 77	ΞΣ	15-51	MRI	24 II 2 dave	CES	Z IEVEI L + E Т + F	Tull recovery Immoved
	53	ΞΣ	L3-4	MRI	2 days	CES	L+ E	Full recovery
Lakshmanan 2006 [60]	58	М	L4-5	MRI	1 month	RP	L + E	Full recovery
	28	ц	L4-5	MRI	3 months	RP	L + E	Full recovery
Chen et al. 2006 [13]	75	M	L2-3	MRI	2 weeks	RP	L + E	Improved
Choi 2007 [16]	897	Σ⊔	L4-5	MRI	3 weeks	RP	HL + E MIT - F	Full recovery
Mahhs 2007 [72]	4 6	r M	L3-4 2 2	MRI	3 days 3 months	RP	ГПL + Е Conservative	Subtotal recovery
EL Asri 2008 [24]	12	ΞΣ	L5-S1	CT	1 month	Radiculonathy	L + E discectomy	Subtotal recovery
	36	Μ	L5-S1	CT	1 month	CES	L + E discectomy	Subtotal recovery
Jose et al. 2008 [5]	45	Σ	L4-5	MRI	1 week	CES	HL + discectomy	Full recovery
Derincek 2009 [19]	09	ы,	L1–2	MRI	1 month	RP/LBP	L + E + discectomy	Full recovery
Nievas 2009 [80]	85 75	ΞŽ	L3-4 I A 5	MKI	2 months	RP, LBP DD I DD	HL+E BHT - E	Full recovery
	5 1 2	ΞΣ	247 7	MRI	4 weeks 3 months	Rediculonathy	ГПЬТЕ HI ± nartial facetectomy	Full recovery
	60	м Ч	12-S1	MRI	2 months	CES	HI.	Full recovery
	59	, Ľ.	L2-4	MRI	4 weeks	Radiculopathy	2 HL + discectomy	Full recovery
Kim 2010 [55]	73	Μ	L4-5	CT/MRI	Acute	CES	Bilateral laminotomy	Improved
Teufack 2010 [106]	49	Z;	L4-5	CT/MRI	1 week	RP, LBP	L+E	Full recovery
Eksi 2010 [23]	50 78	Σu	L3-4	MRI	20 day	RP Dedimination	L + E I - Ession	Full recovery
חומווע כו מו. 2011 [45] סו-ההממי 2011 נמו	0/	цþ	L0-L	MDI	1 work	radiculopadity	L + 1USIOII I - E	Full recovery
	64	_ ∑	1.5–S1	CT	1 week 2 months	CES	L + E L + F + discectamy	Immovement
	48	Z	L3-4	MRI	2 weeks	CES	L + E + discectomy	Improvement
	67	Μ	L3-4	CT	1 year	Radiculopathy	L + E + discectomy	Full recovery

Table 1All cases included in the review

Table 1 (continued)								
Reference and years	Age	Sex	Level	Radiology	Duration	Clinical presentation	Surgery	Outcome
Sengoz 2011 [98]	8 8 4 7 4 4 8 8 8 8 8 4 7 4 4 8 8 8 8 8 4 7 4 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	XXFXXFXX	L34 L44 L34 L34 L33 L33 L33 L33 L33 L33	CT CT MRI MRI MRI MRI MRI	1 month 3 months 3 days 1 day 10 days 5 days 5 days 6 days	Radiculopathy CES CES RP/CES RP/CES RP/CES RP/CES CES CES CES CES	L + E + discectomy L + E + discectomy Mini HL + E Mini laminotomy + E HL + E L + E L + E L + E L + E L + E	Full recovery Improvement Full recovery Full recovery Subtotal recovery Full recovery Full recovery Subtotal ecovery
Hur 2011 [44]	20 20 20 20 20 20 20 20 20 20 20 20 20 2	ZZZ	L4-5 L1-2 L2-3	MRI MRI MRI	2 days 10 days 15 days	RP/LBP CES CES CES	L + E L + E L + E Microdiscectomy	Full recovery Full recovery Improvement
Gonçalves 2012 [36] Talavera 2012 [48] Ju et al. 2012 [115] Rahimizadeh 2013 [85]	60 51 74 53	FXXXX	L3-4 L2-3 L2-3 4 L3-4 L3-4	MRI MRI MRI MRI	5 days 3 days 4 day Acute 1 day	Radiculopathy RP/LBP CES CES CES	L + E HL L + fusion L + fusion L + E + discectomy	Full recovery Improvement Improvement Full recovery Full recovery
Türkoglu 2013 [111] Tarukado 2014 [103] Ba 2014 [6]	555 755 872 872 872 872 872 872 872 872 872 872	ZZZZZZ	L4-5 L2-3 L4-5 L4-5 L4-5 L4-5	MRI MRI MYO-MRI CT, MRI MRI MRI	Acute on top of chronic 12 day/acute 3 days 7 days 2 months Long time	Radiculopathy CES Radiculopathy CES CES CES	L + E + discectomy L + E Microendoscopy L + E L + E L + E	Full recovery Subtotal Full recovery Subtotal Subtotal Full recovery
Yoo 2015 [115] Tarukado 2015 [104]	42 83 83	ZZZ	L4–5 L2–3 L2–3	MRI MRI MRI	2 months 2 weeks 1 month	CES RP, LBP Radiculopathy	L + E L + E Conservative	Subtotal Full recovery Full recovery
	62 79	M M	L2–3 L4–5	MRI MRI	Acute on top Acute on top	Radiculopathy Radiculopathy	Conservative Conservative	I monu Full recovery 4 months Full recovery
	53	М	L3-4	MRI	5 days	Radiculopathy	L + E	6 months Full recovery
Abe 2015 [1] Bouya 2015 [10] Haddadi 2016 [37] Li 2016 [62] Toktas 2016 [107] Diyora et al. 2016 [3] Kutty et al. 2017 [58] Frati 2017 [110] Turan 2017 [110]	$\begin{smallmatrix} & & & & \\ & & & & \\ & & & & \\ & & & & $	ZZZZZZ r ZZrZZzrrZZZ	24222222222222222222222222222222222222	MRI MRI MRI MRI MRI MRI MRI MRI MRI MRI	Acute 2 years 1 week Acute 30 day 2 months 30 5 3 3 Acute on top 3 3 3 2 2 2 2 2 2 1 4 4 1 1 4	Radiculopathy Radiculopathy CES Radiculopathy CES RP, LBP CES CES CES CES CES CES CES CES CES CES	HL + E HL + discectomy L + E L + fusion L + fusion L + fusion L + E L + E L + E L + E L + E L + E HL + E	ja montus limproved limproved Full recovery Full recovery Full recovery Satisfactory Improved Subtotal Improved Subtotal Improved subtotal Excellent Good Good Good Fair Poor Fair Poor Fair

Reference and years	Age	Sex	Level	Radiology	Duration	Clinical presentation	Surgery	Outcome
Takano 2017 [102]	78	Μ	L3-4	Disco/MR	Acute	CES/RP	3 level L + E	Full recovery
Kil 2017 [52]	57	Μ	L2-3	MRI	1 day	RP, LBP	L + E	Full recovery
Frioui 2018 [33]	29	Μ	L3-4	MRI	1 day	CES	L + D	Subtotal
Ozdemir 2017 [84]	46	Ц	L4-5	MRI	2 weeks	RP	PHL + E	Full recovery
Montalvo 2018 [73]	45	М	L4-5	MRI	28 days	CES	L + E	Full recovery
,	33	М	L4-5	MRI	5 months	RP/LBP	L + fusion	Improved
Kim [56]	76	Μ	L2-3	MRI	S	CES	L + E	Full recovery
Hawkins et al. [39]	40	Μ	L4-5	MRI	7	CES	L + E	Full recovery
Elsharkawy 2018 [29]	78	Μ	L1–2	MRI	120	RP	Interlaminar + E	Full recovery

[able 1 (continued)

[113]. Kelsey et al. [50] reported that jobs involving lifting objects with a twisted back and straight knees were associated with a high risk for disc injury. Therefore, the natural history of dorsal disc herniation is still unknown.

Pathophysiology and mechanism of dorsal migration

Current knowledge of the mechanism behind the migration of the disc fragment is limited. Dorsal migration begins with a tear in the annulus. The most important contributing factors are formation of radial fissures; combinations of repetitive compression loading, bending, and axial torsion rotation; and compression [68, 82]. This tear leads to extrusion of the nuclear material from the disc [2]. The extruded fragment is always contained within the posterior longitudinal ligament on the posterior or posterolateral aspect of the disc and involves material from the nucleus pulposus [18, 47, 74]. Moreover, the annular fiber arrangement directs the disc herniation toward the exiting and traversing nerve roots [42, 108].

Dorsal migration is limited by certain anatomic barriers; the sagittal midline septum connects the posterior longitudinal ligament to the medial and lateral walls of the spinal canal and the nerve roots themselves [106]. This anatomic barrier may, however, not be enough to prevent dorsal migration if there is severe adhesion between the annulus fibrous and the dural sac; because of the location of the annulus tear near the pedicle and acute strong pressure, the disc material may be pushed to the dorsal side of the dural sac [75, 109]. The wide angle between the nerve root and the dural sac in the upper lumbar spine may also play a role in posterior migration [6]. Some authors have suggested that preexisting scoliosis in older patients may be a predisposing factor through ventral deviation development and facet joint rotations in one side [46]. Moreover, the general predisposing factors in disc herniation, such as hard work, body mass index, positive family history, lack of sports activities, and spinal manipulation, may play a role in posterior migration of disc fragments [26, 72, 89].

Why L3–L4 and males?

Consistent with published data, our review showed that L3– L4 was the level most frequently affected (approximately 40% of cases), and L4–L5 was second most frequently affected [29, 98, 110]. The reason is not exactly known; it may be a combination of degeneration in older patients, anatomy, and occupation. According to our review, the mean age of affected patients was about 54 years. Patients with herniated discs at the L3–L4 level or above were significantly older than those with herniation at L4–L5 or below [46]. Kanayama et al. [49] reported that the risk for degeneration in L3–L4 increases with age.

Table 2Type of surgery and outcome

Surgical approach	Number and percentage
Laminectomy	62 (57.9%)
Multisegmental laminectomy	8 (7.5%)
Laminectomy with fusion	7 (6.5%)
Hemilaminectomy	21 (19.6%)
Laminotomy	4 (3.6%)
Interlaminar Fensterung	4 (3.7%)
Endoscopic	1 (0.9%)

Published data have shown that lumbar disc degeneration in younger people occurred more often at lower levels (L4– L5, L5–S1), and in older patients it occurred more often at higher levels (L1–L2, L2–L3, L3–L4) [70, 91]. Disc degeneration in older age may be associated with insufficient ligaments and other structures. Consistent with these data, we found significant differences in disc herniation levels according to patients' ages ($\eta = 0.405$, p = .001), in which patients with a higher level of disc degeneration had a higher mean age.

Anatomy of the L3–L4 level may play also a role: at this level, the spinal canal is larger and the intervertebral disc is more horizontal. Such configurations may, in association with the nerve root, be more conducive to epidural migration [62, 98]. Load with the aging process may be another factor; mathematical models showed that the load on L3 and L4 in sitting and standing positions with flexion is 2 and a half times that of the total body weight [45, 94]. Several studies demonstrated an association between heavy physical activity and disc degeneration [7, 112].

In general, spine compression is more severe in men. Studies have shown that the cross-sectional area of major trunk-loading muscles was smaller in women than in men; moreover, the directions of muscle force differ between men and women [11, 69, 79].

The range of motion also differs in relation to gender: males have more lumbar extension than females, and females have more lateral flexion or sideways movement of the spine [8]. Women also have significantly more lumbar lordosis than

Neurosurg Rev

 Table 4
 Comparison of groups "upper lumbar spine" and "lower lumbar spine" with respect to the outcome

	Outcome		
	Full recovery <i>n</i> (%)	Subtotal recovery <i>n</i> (%)	Total
Upper lumbar spine	43 (65.2%)	23 (34.8%)	66 (100%)
Lower lumbar spine	30 (66.7%)	15 (33.3%)	45 (100%)
Total	73 (65.8%)	38 (34.2%)	111 (100%)

This table includes all patients (with and without surgery). An analysis including only patients with surgery (n = 107) leads to comparable results. Upper lumbar spine: L1–2, L2–3, L3–4; lower lumbar spine: L4–5, L5–S1

men [83]. This may indicate that the pushing forces in men are greater, which is conducive to migration of a disc fragment to posterior epidural spaces.

Diagnostic studies

Early diagnosis of posterior epidural disc degeneration is essential for choosing the appropriate treatment protocol, preventing permanent neurological complications, and optimizing postoperative clinical outcomes [34, 71].

Contrast material–enhanced MRI is the best means of diagnosis [29, 37, 85]. Our review showed that MRI was performed in most cases, and the disc fragments appeared hypointense on T1-weighted images, hyperintense in 80% of T2-weighted images, and of varying intensity in the other 20% [51]. In short-T1 inversion recovery (STIR) MRI, the fragments appear hyperintense because of increased regional blood perfusion in those areas [13].

MRI is helpful in outlining areas of spinal cord compression and may show the route of migration in the form of a tract-like enhancement extending from the outer aspect of the disc to the posterior epidural space [13, 99]. Despite the fact that MRI is an essential tool for diagnosing migrating posterior disc fragments, the appearances of disc fragments are not specific and may be similar to those of other posterior epidural

 Table 3
 Comparison of males and females with respect to the outcome

	Outcome		
	Full recovery <i>n</i> (%)	Subtotal recovery <i>n</i> (%)	Total
Male	57 (64.0%)	32 (36.0%)	89 (100%)
Female	16 (72.7%)	6 (27.3%)	22 (100%)
Total	73 (65.8%)	38 (34.2%)	111 (100%)

This table includes all patients (with and without surgery). An analysis including only patients with surgery (n = 107) leads to comparable results

 Table 5
 Association between disc level and age

	Age				
Level of disc	N	М	SD		
L1–2	4	62.50	11.59		
L2-3	21	59.76	11.55		
L3-4	41	57.44	12.52		
L4-5	37	48.08	14.48		
L5-S1	8	44.88	9.09		
Total	111	54.04	13.79		

pathological lesions; therefore, MRI may be inconclusive, especially without disc degeneration [80] (Fig. 1).

The native CT scan was the main diagnostic tool in 11% of the cases, mainly because CT scanning is fast and overall available; MRI may be unavailable in emergency situations and was not available for some earlier cases. In detecting typical disc herniation, CT scanning had 81.3% sensitivity and 77.1% specificity [57]. CT scanning combined with MRI may be used to detect calcification, which may help with differential diagnosis.

Myelography was one of the diagnostic tools in our review, especially in earlier cases; blockage of contrast medium at the level of disc herniation or sequestration was the main finding. Myelography was estimated to have 75.7% sensitivity and 76.5% specificity [57]. Myelography mainly reveals only the mass effect and compression of the dural sac and does not provide any information about the nature of the lesion.

Discography has shown some advantage in detecting the disc fragment origin through contrast medium leakage from the disc into the posterior dural space. This appearance may confirm that the posterior mass is part of the disc [102]. However, discography is an invasive procedure and may accelerate disc degeneration, even though small-bore needles and low-pressure injection are used. It may also cause disc herniation [12].

Electromyography was also used to diagnose posterior disc migration; if preoperative diagnosis is difficult, electromyography can reveal neural damage and nerve compression [56]. Electromyography is mainly an adjunct diagnostic method and more accurate in detecting compression of the nerve roots [63].

Collection of information such as history, clinical examination findings, and laboratory data raises the chances for accurate diagnosis. Published data have shown that up to 80% of cases can be diagnosed appropriately through MRI, along with clinical history and laboratory data [27, 37, 85]. Therefore, intraoperative findings may be suspect, but the final diagnosis depends on histopathological examination [102].

Differential diagnosis

In most cases, posterior epidural disc herniation manifests as an emergency; it should be diagnosed quickly, and emergency surgery may be performed. In this situation, establishing the appropriate diagnosis is difficult [32].

The differential diagnosis includes conditions with features similar to posterior epidural mass, which include degenerative (synovial cyst, and facet joint osteophyte), infective (epidural abscess), neoplastic (meningioma, metastasis, lipoma, lymphoma, hemangioma), and miscellaneous pathologic processes (postoperative fibrosis) [25, 61].

Fig. 1 MRI. (1a) Sagittal T2weighted image. (1b) Axial T2weighted image showing a posterior mass at level L1–2. (2a, 2b) Sagittal and axial T1-weighted image with contrast showing a ring enhancement (Elsharkawy 2018) Synovial cysts may be observed on MRI, depending on the cyst content. T2-weighted MRI commonly reveals fibrosis or calcified hypointense capsules, and there may be adhesions to adjacent neural structures. Ligamentum flavum cysts are usually hemorrhagic and not connected to the facet joint [34]. Posterior lipomatosis is usually hyperintense on T1- and T2-weighted MRI [34].

Contrast material–enhanced MRI usually reveals solid and homogeneous enhancement in cases of meningiomas and hemangiomas. Abscesses and hematomas usually demonstrate peripheral rims of enhancement with an associated infectious illness or history of trauma. Spondylodiscitis may be associated with the epidural abscess; initial manifestations include fibrosis in 66% of cases, and 5.5% of affected patients have a history of epidural injection [86].

Hematoma appears as a biconvex lesion with a variable signal on T1-weighted images and has hypointense foci on a heterogeneous hyperintense background on T2-weighted images [34]. Bleeding or anticoagulation disorders, epidural anesthesia, trauma, and pregnancy are risk factors associated with epidural hematoma [76]. Hematoma shows different signals on MRI, depending on duration of bleeding [34].

In cases of malignant neoplasm, history and general examination usually reveal multisystem involvement. Based on associated infectious illness, history of trauma, clinical examination findings, and radiologic shape of the mass and form of contrast enhancement, the appropriate diagnosis can be reached in most cases [19, 32, 67].

Clinical manifestations

The clinical manifestations of posterior disc fragment include no typical features [73]. Therefore, the clinical presentation is variable, from lumbago without neurologic deficits to cauda equina syndrome [29, 51]. We found that approximately 50% of affected patients presented with cauda equina syndrome with neurologic deficits [32, 51].

In typical disc herniation cases, cauda equina syndrome is clinically rare; the incidence is 1.8 per million in the general population. In approximately 2 to 6% of cases, patients undergo lumbar disc surgery because of cauda equina syndrome [35]. However, the incidence of cauda equine syndrome is higher among posterior lumbar disc herniation cases [73]. The small size of the posterior epidural space is conducive to neural structure compression, which increases the chances of neurologic deficits [35, 51]. Cauda equina syndrome is caused by mechanical compression of the dural sac and neural structures, resulting in decreased blood flow and availability of nutrients, and in intraneural edema, which indirectly leads to ischemia and injury [87]. Bowel dysfunction and bladder paralysis are warning signs and usually indicate that emergency surgery is warranted [20]. We noticed in the review that there was no definition of cauda equina syndrome; several authors described the symptoms without clear definition. In general, nonspecific symptoms and signs of cauda equina syndrome may vary widely [77].

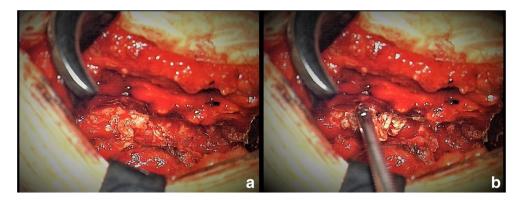
Our review showed that clinical presentation usually starts with acute LBP and sciatica over a period of hours to days and, in several cases, on top of chronic LBP [32, 104], followed by progressive neurologic and sphincter disturbances [16, 48, 54, 65, 88].

Treatment

Management of posterior epidural migration of lumbar disc fragments should start according to guidelines that apply in cases of ordinary disc herniation. However, approximately 50% of cases are emergencies, which make the decision-making and treatment planning challenging [32].

Conservative treatment

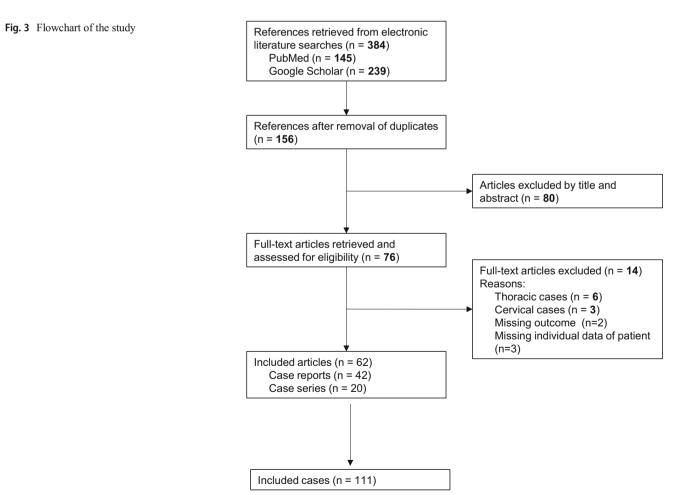
In our review, 4 cases were treated conservatively, and in one case, the patient's condition spontaneously improved [72, 104]. In principle, treatment should be conservative for all patients as long as they have no progressive neurological deficit or cauda equina syndrome. Pain killers, corticosteroids, and physical therapy are usually administered [38]. Patients undergoing conservative treatment need continuous follow-up [104].


Surgical treatment

In most cases, surgery was the treatment of choice. Surgical management was carried out in 96% of patients in our reviewed cases.

Several authors recommended early surgery as the first choice of therapy in patients with large sequestered disc fragments that had migrated posteriorly to prevent severe neurological deficits such as cauda equina and conus medullaris syndromes [51]. Our review showed, in agreement with published data, that surgical intervention resulted in a satisfactory outcome, which may be the reason for recommending surgery [15, 51, 105].

Surgical approach and strategies


The challenges encountered in the preoperative diagnostic studies continue during surgical planning. The surgical plan should guarantee maximal exposure of the pathologic process, avoid incidental durotomy, enable approach to the nerve root **Fig. 2** (2a) Intraoperative picture showing a disc material extended to the ventromedial side of the disc after removal of the mass, (2b) showing a disc material after removal of the capsule membrane.

and disc spaces without traction on the neural structures, and minimize overlap syndrome and instability [32]. To reach this goal, individual patient features should be considered, and the surgical technique should be planned carefully to increase chances of better results [87].

Surgical strategies in our review varied from multilevel laminectomy with fusion to minimal invasive endoscopy [87]. Laminectomy and decompression were predominantly used in cases of posterior disc fragment (Table 1). Laminectomy ensures full exposure of the fragment and easier removal of the lesion, decreases the risk of incidental dural tear, minimizes the traction on the neural structures, and saves time, which is especially important in emergency situations [6, 32, 102].

Hemilaminectomy, mini-hemilaminectomy, and laminotomy were the second most common surgical techniques used to minimize instability and for bone removal [72, 80, 98, 110]. Laminectomy with various types of spine fusion, such as fusion with interspinous devices and dynamic fusion with rod and screws, was used in several cases to

Deringer

stabilize the spine, reduce load pressure over disc spaces and facet joints, and treat the possible overlap instability postoperatively [32, 37, 43, 48, 62, 74, 115].

Minimal invasive approaches, such as interlaminar and endoscopy, were reported in several selected cases, with success rates like those for laminectomy [22, 29, 44, 103].

Intraoperative findings

In our review, the ligamentum flavum was intact in all cases except one, in which ligamentum flavum perforation was noticed [84]. The ligamentum flavum showed degeneration changes and thickness [1].

Authors described the intraoperative disc fragment in different ways: as "free" [97], as "huge" [103], and as "big" [85]. Others gave exact measurements, such as " $15 \times 12 \times 10$ mm" or " $20 \times 13 \times 10$ mm" [105], or approximate measurements, such as "a 2.3cm sized mass" [1], "a 3 cm sized mass" [16], and "4 cm in length" [44]. Some authors described the disc fragment as an "elastic mass" [1], "hard" [55], "fat-like sequestrated" [44], and "semi-hard and capsulated mass" [29]. Surrounding and embedded tissues were described as "inflammatory" tissue [32], as richly vascularized fat tissue [16], as "encased in veins" [55], as granulation tissue [52], and as highly vascularized epidural fat [1]. Some disc fragments were found in posterolateral locations [39, 44, 53, 80, 84] and tracing their origins to the original disc was also described [29, 58, 66]. In other cases, authors described a thin film of disc material on the ventromedial side [29] and adherence of this material to the dural sac [32].

Rupture at the posterior longitudinal ligament [1] and annulus tear [52, 85] was detected. Other authors described the annulus as stretched more than usual [103]. Discectomy to remove degenerated disc material was done in about 30% of cases (Table 1). An empty disc was also reported [21], but dural tear due to disc fragment was not reported. The pathologic examination confirmed the presence of a disc fragment in all cases (Fig. 2).

Limitation of the results

General case report limitations included variations in diagnostic procedures, in assessment of outcome, in identification of level when the disc fragment was gigantic, in definition of cauda equina syndrome, and in the surgical approaches. Overinterpretation, misinterpretation, and a tendency to report only positive outcomes are common biases in case reports [81]. Figure 3 shows the flowchart of the study.

Conclusion

The diagnosis and treatment of posterior epidural disc fragments are challenging. It should be included in the differential diagnosis for patients with acute LBP and progressive neurologic impairments without infection or general illness. Careful history documentation, clinical examinations, and contrast material–enhanced MRI with laboratory tests could help reveal the presence of the disc fragment and rule out several other pathologic processes. Surgical treatment produces a favorable outcome in most cases.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

Ethical approval Approved from local ethics committee in hospital

Informed consent Not applicable (review)

References

- Abe E, Uchikado H, Maruiwa H, Ichinomiya T, Fujiki M (2015) Two cases of dorsal epidural migration of lumbar disk fragments. Neurosurg Q 25(1):131–136
- Adams MA, Hutton WC (1985) Gradual disc prolapse. Spine (Phila Pa 1976) 10(6):524–531
- Ajayi O, Shoakazemi A, Tubbs RS, Moisi M, Rostad S, Newell DW (2016) Atypical presentation of a sequestered posterolateral disc fragment. Cureus 8(2):e502
- Akhaddar A, El-asri A, Boucetta M (2011) Posterior epidural migration of a lumbar disc fragment: a series of 6 cases. J Neurosurg Spine 15(1):117–128
- Ávila Ramírez J, Reyes Rodríguez VA, Ulibarri-Vidales M, Ávila Cervantes R (2008) Epidural dorsally sequestered lumbar disc herniation at L4-L5. Case report. Rev Mex Neurocienc 9:494–496
- Ba MC, Kleib R, Sy C, Diabang J, Ndoye N, Thiam AB, Thioub M, Tine I, Badiane SB (2014) Lumbar disc hernia migrating to the epidural posterior space: a rare entity. Internet J Neurosurgery 10:1–6
- Battié MC, Videman T (2006) Lumbar disc degeneration: epidemiology and genetics. J Bone Joint Surg Am 88(Suppl 2):3–9
- Berryman Reese N, Bandy WD (2016) Joint range of motion and muscle length testing-E-book, 3th edition, st. Laouis, Missouri, ISBN: 0323291554
- Bonaroti EA, Welch WC (1998) Posterior epidural migration of an extruded lumbar disc fragment causing cauda equina syndrome. Clinical and magnetic resonance imaging evaluation. Spine (Phila Pa 1976) 23(3):378–381
- Bouya SM, Djoubairou BO, Okacha N, Gazzaz M, El Mostarchid B (2015) Posterior epidural migration of lumbar intervertebral fragment: case report. Pan Afr Med J 21:80
- Brinckmann P, Hoefert H, Jongen HT (1981) Sex differences in the skeletal geometry of the human pelvis and hip joint. J Biomech 14(6):427–430
- Carragee EJ, Don AS, Hurwitz EL, Cuellar JM, Carrino J, Herzog R, Herzog R (2009) 2009 ISSLS prize winner: does discography cause accelerated progression of degeneration changes in the lumbar disc. Spine (Phila Pa 1976) 34:2338–2345

- Chen CY, Chuang YL, Yao MS, Chiu WT, Chen CL, Chan WP (2006) Posterior epidural migration of a sequestrated lumbar disk fragment: MR imaging findings. Am J Neuroradiol 27(7): 1592–1594
- Chiu C-C, Chuang T-Y, Chang K-H, Wu C-H, Lin P-W, Hsu W-Y (2015) The probability of spontaneous regression of lumbar herniated disc: a systematic review. Clin Rehabil 29:184–195
- Choi Y-S (2009) Pathophysiology of degenerative disc disease. Asian Spine J 3:39–44
- Choi JY, Lee WS, Sung KH (2007) Intradural lumbar disc herniation–is it predictable preoperatively? A report of two cases. Spine J 7:111–117
- Cribb GL, Jaffray DC, Cassar-Pullicino VN (2007) Observations on the natural history of massive lumbar disc herniation. J Bone Joint Surg (Br) 89–B:782–784
- Daghighi MH, Pouriesa M, Maleki M, Fouladi DF, Pezeshki MZ, Mazaheri Khameneh R, Bazzazi AM (2014) Migration patterns of herniated disc fragments: a study on 1,020 patients with extruded lumbar disc herniation. Spine J 14(9):1970–1977
- Derincek A, Özalay M, Şen O, Pourbagher A (2009) Posterior epidural mass : can a posteriorly migrated lumbar disc fragment mimic tumour, haematoma or abscess ? Acta Orthop Belg 75(3): 423–427
- Dinning TA, Schaeffer HR (1993) Discogenic compression of the cauda equina: a surgical emergency. Aust N Z J Surg 63:927–934
- Diyora BD, Giri S, Giri D, Nitin Kotecha SP (2016) An unusual case of dorsally sequestrated disk mimicking tumor with cauda equina syndrome. J Spinal Surg 1:15–17
- Dösoğlu M, Is M, Gezen F, Ziyal MI (2001) Posterior epidural migration of a lumbar disc fragment causing cauda equina syndrome: case report and review of the relevant literature. Eur Spine J 10:348–351
- Ekşi MS, Yener U, Akakin A, Akakin D, Konya D (2010) Posterior epidural disc herniation at L3-L4 mimicking a spinal tumor: a case report. J Neurosurg Sci 54:71–76
- El Asri AC, Naama O, Akhaddar A, Gazzaz M, Belhachmi A, El Mostarchid B, Boucetta M (2008) Posterior epidural migration of lumbar disk fragments: report of two cases and review of the literature. Surg Neurol 70(6):668–671
- El Khamary SM, Alorainy IA (2006) Case 100: spinal epidural meningioma 1. Radiology 241(2):614–617
- Elfering A, Semmer N, Birkhofer D, Zanetti M, Hodler J, Boos N (2002) Risk factors for lumbar disc degeneration: a 5-year prospective MRI study in asymptomatic individuals. Spine (Phila Pa 1976) 27:125–134
- Elgamri A, Sami A, Aqqad A, Hilmani S, Ibahioin K, Naja A, El Kamar A, El Azhari A (2009) Posterior migration of a lumbar disc herniation as a cause of cauda equina syndrome. J Radiol 90(6): 731–733
- Elsharkawy AE, Avramidis P, Baume B, Gafumbegete E, Lange B, Klassen PD (2017) An intradural lumbar disc fragment with free migration: a case of a missed intradural disc herniation. Interdiscip Neurosurg Adv Tech Case Manag 7:17–21
- Elsharkawy AE, Gafumbegete E, Klassen PD (2018) Posterior epidural migration of extruded lumbar disc fragment mimicking epidural mass: a case report. Interdiscip Neurosurg Adv Tech Case Manag 11:31-33
- Eysel P, Herbsthofer B (2001) Dorsal compression of the epidural cord due to free sequestral lumbar prolapse. Arch Orthop Trauma Surg 121:238–240
- 31. Fardon DF, Milette PC, Combined Task Forces of the North American Spine Society, American Society of Spine Radiology, and American Society of Neuroradiology (2001) Nomenclature and classification of lumbar disc pathology. Recommendations of the Combined task Forces of the North American Spine

Society, American Society of Spine Radiology, and American Society of Neuroradiology. Spine (Phila Pa 1976) 26:E93–E113

- 32. Frati A, Pesce A, Palmieri M, Vangelista T, Caruso R, Salvati M, Raco A (2017) Anterior-to-posterior migration of a lumbar disc sequestration: surgical remarks and technical notes about a tailored microsurgical discectomy. Case Rep Surg 2017:1762047
- Frioui S, Khachnaoui F (2018) Posterior epidural migration of a lumbar disk: an entity not to ignore. Pan Afr Med J 29:59
- Gala F, Aswani Y (2016) Imaging in spinal posterior epidural space lesions: a pictorial essay. Indian J Radiol Imaging 26(3): 299–315
- Gardner A, Gardner E, Morley T (2011) Cauda equina syndrome: a review of the current clinical and medico-legal position. Eur Spine J 20:690–697
- Gonçalves FG, Hanagandi PB, Torres CI, DelCarpio-O'Donovan R (2012) Posterior migration of lumbar disc herniation - imaging dilemma due to contrast contraindication: a case report. Radiol Bras 45(3):170–172
- Haddadi K, Qazvini HRG (2016) Posterior epidural migration of a sequestrated lumbar disk fragment causing cauda equina syndrome in an old patient: a case report. Clin Med Insights Case Reports 9:39–41
- Hagen KB, Hilde G, Jamtvedt G, Winnem MF (2002) The Cochrane review of advice to stay active as a single treatment for low back pain and sciatica. Spine (Phila Pa 1976) 27:1736– 1741
- Hawkins JC, Natkha VP, Seibly J (2018) Posterior epidural migration of a lumbar disc herniation causing cauda equina syndrome: a case report. Cureus 10:e2739
- Hirabayashi S, Kumano K, Tsuiki T, Eguchi M, Ikeda S (1990) A dorsally displaced free fragment of lumbar disc herniation and its interesting histologic findings. A case report. Spine (Phila Pa 1976) 15:1231–1233
- Hodges SD, Humphreys SC, Eck JC, Covington LA (1999) Posterior extradural lumbar disk fragment. J South Orthop Assoc 8:222–228
- Hsu EW, Setton LA (1999) Diffusion tensor microscopy of the intervertebral disc anulus fibrosus. Magn Reson Med 41(5):992– 999
- Huang T-Y, Lee K-S, Tsai T-H, Su Y-F, Hwang S-L (2011) Posterior epidural migration of sequestrated lumbar disc fragments into the bilateral facet joints: case report. Neurosurgery 69(5):E1148–E1151
- Hur JW, Lee JW, Rhee JJLH (2011) Posterior epidural migration of lumbar disc fragment: three cases and review of literature. Korean J Spine 8:66–69
- Inoue N, Espinoza Orías AA (2011) Biomechanics of intervertebral disk degeneration. Orthop Clin North Am 42(4):487–499
- 46. Iwasaki M, Akino M, Hida K, Yano S, Aoyama T, Saito H, Iwasaki Y (2011) Clinical and radiographic characteristics of upper lumbar disc herniation: ten-year microsurgical experience. Neurol Med Chir (Tokyo) 51(6):423–426
- Jensen MC, Brant-Zawadzki MN, Obuchowski N, Modic MT, Malkasian D, Ross JS (1994) Magnetic resonance imaging of the lumbar spine in people without back pain. N Engl J Med 331:69–73
- Jové Talavera R, Altemir Martínez V, Chárlez Marco A, Mas Atance J, Curiá Jové E, Aguas Valiente J (2012) Epidural posterior migration of a disc fragment. Rev Esp Cir Ortop Traumatol 56(3): 224–226
- Kanayama M, Togawa D, Takahashi C, Terai T, Hashimoto T (2009) Cross-sectional magnetic resonance imaging study of lumbar disc degeneration in 200 healthy individuals. J Neurosurg Spine 11(4):501–507
- Kelsey JL, Githens PB, White AA, Holford TR, Walter SD, O'Connor T, Ostfeld AM, Weil U, Southwick WO, Calogero JA

(1984) An epidemiologic study of lifting and twisting on the job and risk for acute prolapsed lumbar intervertebral disc. J Orthop Res 2(1):61-66

- 51. Khan Z, Sharafat S, Ali M, Haider A, Khanzada K, Siddique M (2013) Posterior epidural migration of herniated disc posterior epidural migration of herniated lumbar disc fragment: experience with 11 cases. Gomal J Med Sci 11:13–15
- Kil J-S, Park J-T (2017) Posterior epidural herniation of a lumbar disk fragment at L2-3 that mimicked an epidural hematoma. Korean J Spine 14:115–117
- Kim MS, Hur JW, Lee JW, Lee HK (2003) Posterior and lateral epidural migration of extruded lumbar disc fragments: case report. J Korean Neurosurg Soc 33:297–298
- Kim JH, Kong MH, Lee SK, Song KY (2004) A case of posterior epidural migration of an extruded lumbar disc fragment causing cauda equina syndrome. J Korean Neurosurg Soc 35:442–444
- 55. Kim JS, Lee SH, Arbatti NJ (2010) Dorsal extradural lumbar disc herniation causing cauda equina syndrome : a case report and review of literature. J Korean Neurosurg Soc 47:217–220
- 56. Kim H, Kwon BS, Park J-W, Lee HJ, Lee JW, Lee EK, Park TJ, Kim HJ, Cho Y, Kim T, Nam K (2018) Posterior epidural migration of a lumbar intervertebral disc fragment resembling a spinal tumor: a case report. Ann Rehabil Med 42:621–625
- 57. Kim JH, van Rijn RM, van Tulder MW, Koes BW, de Boer MR, Ginai AZ, Ostelo RWGJ, van der Windt DAMW, Verhagen AP (2018) Diagnostic accuracy of diagnostic imaging for lumbar disc herniation in adults with low back pain or sciatica is unknown; a systematic review. Chiropr Man Therap 26:37
- Kutty RK, Sreemathyamma BS, Peethambaran A, Jain SK, Kumar S (2017) PEMLIF—a tale of two stories. J Spine Surg 3: 498–503
- Kuzeyli K, Çakr E, Usul H, Baykal S, Yazar U, Karaarslan G, Arslan E, Peksoylu B (2003) Posterior epidural migration of lumbar disc fragments. Spine (Phila Pa 1976) 28(3):E64–E67
- Lakshmanan P, Ahuja S, Lyons K, Howes J, Davies PR (2006) Sequestrated lumbar intervertebral disc in the posterior epidural space: a report on two cases and review of the literature. Spine J 6(5):583–586
- 61. Lee JW, Cho EY, Hong SH, Chung HW, Kim JH, Chang K-H, Choi J-Y, Yeom J-S, Kang HS (2007) Spinal epidural hemangiomas: various types of MR imaging features with histopathologic correlation. AJNR Am J Neuroradiol 28(7):1242–1248
- Li K, Li Z, Geng W, Wang C, Ma J (2016) Postdural disc herniation at L5/S1 level mimicking an extradural spinal tumor. Eur Spine J 25:80–83
- Li W, Liu Y, Zheng C, Miao J, Chen H, Quan H, Yan S, Zhang K (2018) Diagnosis of compressed nerve root in lumbar disc herniation patients by surface electromyography. Orthop Surg 10: 47–55
- Lichtor T (1989) Posterior epidural migration of extruded lumbar disk. Surg Neurol 32:311–312
- 65. Lisai P, Doria C, Crissantu L, Dore T, Spano G, Fabbriciani C (2000) Posterior epidural migration of an extruded free fragment from a lumbar disc herniation. J Orthop Traumatol 1:103–105
- Lombardi V (1973) Lumbar spinal block by posterior rotation of anulus fibrosus. Case report. J Neurosurg 39:642–647
- Lutz JD, Smith RR, Jones HM (1990) CT myelography of a fragment of a lumbar disk sequestered posterior to the thecal sac. AJNR Am J Neuroradiol 11:610–611
- Marras WS, Lavender SA, Leurgans SE, Rajulu SL, Gary Allread W, Fathallah FA, erguson SA (1993) The role of dynamic threedimensional trunk motion in occupationally-related low back disorders: the effects of workplace factors, trunk position, and trunk motion characteristics on risk of injury. Spine (Phila Pa 1976) 18(5):617–628

- Marras WS, Jorgensen MJ, Granata KP, Wiand B (2001) Female and male trunk geometry: size and prediction of the spine loading trunk muscles derived from MRI. Clin Biomech 16(1):38–46
- Martin MD, Boxell CM, Malone DG (2002) Pathophysiology of lumbar disc degeneration: a review of the literature. Neurosurg Focus 13(2):E1
- Matsumoto T, Toyoda H, Terai H, Dohzono S, Hori Y, Nakamura H (2016) Utility of discography as a preoperative diagnostic tool for intradural lumbar disc herniation. Asian Spine J 10:771. https://doi.org/10.4184/asj.2016.10.4.771
- 72. Mobbs RJ, Steel TR (2007) Migration of lumbar disc herniation: an unusual case. J Clin Neurosci 14(6):581–584
- 73. Montalvo Afonso A, Mateo Sierra O, Gil de Sagredo Del Corral OL, Vargas López AJ, González-Quarante LH, Sola Vendrell E, Romero Martínez J (2018) Misdiagnosis of posterior sequestered lumbar disc herniation: report of three cases and review of the literature. Spinal Cord Ser Cases 4:61
- Moore RJ, Vernon-Roberts B, Fraser RD, Osti OL, Schembri M (1996) The origin and fate of herniated lumbar intervertebral disc tissue. Spine (Phila Pa 1976) 21:2149–2155
- Morizane A, Hanakita J, Suwa H, Ohshita N, Gotoh K, Matsuoka T (1999) Dorsally sequestrated thoracic disc herniation - case report. Neurol Med Chir (Tokyo) 39(11):769–772
- 76. Naidich TP (2011) Imaging of the spine. Saunders/Elsevier
- Nater A, Fehlings MG (2015) The timing of decompressive spinal surgery in cauda equina syndrome. World Neurosurg 83:19–22
- Neugroschl C, Kehrli P, Gigaud M, Ragragui O, Maitrot D, Manelfe C, Dietemann JL (1999) Posterior extradural migration of extruded thoracic and lumbar disc fragments: role of MRI. Neuroradiology 41(9):630–635
- Ng JK, Kippers V, Richardson CA (1998) Muscle fibre orientation of abdominal muscles and suggested surface EMG electrode positions. Electromyogr Clin Neurophysiol 38(1):51–58
- Nievas MNC, Hoellerhage H-G (2009) Unusual sequestered disc fragments simulating spinal tumors and other space-occupying lesions. J Neurosurg Spine 11(1):42–48
- Nissen T, Wynn R (2014) The clinical case report: a review of its merits and limitations. BMC Res Notes 7:264
- 82. Norman R, Wells R, Neumann P, Frank J, Shannon H, Kerr M, The Ontario Universities Back Pain Study (OUBPS) Group (1998) A comparison of peak vs cumulative physical work exposure risk factors for the reporting of low back pain in the automotive industry. Clin Biomech 13(8):561–573
- Norton BJ, Sahrmann SA, Van Dillen LR (2004) Differences in measurements of lumbar curvature related to gender and low Back pain. J Orthop Sport Phys Ther 34(9):524–534
- Ozdemir B, Kanat A, Batcik OE, Erturk C, Celiker FB, Guverein AR, Yazar U (2017) First report of perforation of ligamentum flavum by sequestrated lumbar intervertebral disc. J Craniovertebral Junction Spine 8:70–73
- Rahimizadeh A, Rahimizadeh A, Soufiani H (2013) Posterior epidural migration of sequestered lumbar disc fragment causing cauda equina syndrome. Coluna/ Columna 12(1):78–80
- Reihsaus E, Waldbaur H, Seeling W (2000) Spinal epidural abscess: a meta-analysis of 915 patients. Neurosurg Rev 23:175–204 discussion 205
- Rhee JM, Schaufele M, Abdu WA (2006) Radiculopathy and the herniated lumbar disc. Controversies regarding pathophysiology and management. J Bone Joint Surg Am 88:2070–2080
- Robe P, Martin D, Lenelle J, Stevenaert A (1999) Posterior epidural migration of sequestered lumbar disc fragments. Report of two cases. J Neurosurg 90:264–266
- Saftić R, Grgić M, Ebling B, Splavski B (2006) Case-control study of risk factors for lumbar intervertebral disc herniation in Croatian island populations. Croat Med J 47:593–600

- Sakas DE, Farrell MA, Young S, Toland J (1995) Posterior thecal lumbar disc herniation mimicking synovial cyst. Neuroradiology 37:192–194
- Saleem S, Aslam HM, Rehmani MAK, Raees A, Alvi AA, Ashraf J (2013) Lumbar disc degenerative disease: disc degeneration symptoms and magnetic resonance image findings. Asian Spine J 7:322–334
- Saruhashi Y, Omura K, Miyamoto K, Katsuura A, Hukuda S (1999) A migrated lumbar disc herniation simulating a dumbbell tumor. J Spinal Disord 12:307–309
- Schellinger D, Manz HJ, Vidic B, Patronas NJ, Deveikis JP, Muraki AS, Abdullah DC (1990) Disk fragment migration. Radiology 175:831–836
- Schultz AB, Andersson GBJ, Haderspeck K, Örtengren R, Nordin M, Björk R (1982) Analysis and measurement of lumbar trunk loads in tasks involving bends and twists. J Biomech 15(9):669–675
- Sekerci Z, Ildan F, Yüksel M, Gül B, Kiliç C (1992) Cauda equina compression due to posterior epidural migration of extruded lumbar disk. Neurosurg Rev 15:311–313
- 96. Sen O, Volkan Aydin M, Erdogan B, Yildirim T, Can er H (2001) Cauda equina syndrome caused by posterior epidural migration of an extruded lumbar disc fragment. Turk Neurosurg 11:108–110
- Şenel A, Çokluk C, Çelik F (2003) Posterior epidural migration of extruded lumbar disc mimicking epidural mass: case report. Turk Neurosurg 13:3–4
- Sengoz A, Kotil K, Tasdemiroglu E (2011) Posterior epidural migration of herniated lumbar disc fragment. J Neurosurg Spine 14(3):313–317
- Sze G, Krol G, Zimmerman RD, Deck MD (1988) Malignant extradural spinal tumors: MR imaging with Gd-DTPA. Radiology 167(1):217–223
- Taher F, Essig D, Lebl DR, Hughes AP, Sama AA, Cammisa FP, Girardi FP (2012) Lumbar degenerative disc disease: current and future concepts of diagnosis and management. Adv Orthop 2012: 970752
- 101. Takada E, Takahashi M, Shimada K (2001) Natural history of lumbar disc hernia with radicular leg pain: spontaneous MRI changes of the herniated mass and correlation with clinical outcome. J Orthop Surg (Hong Kong) 9(1):1–7
- 102. Takano M, Hikata T, Nishimura S, Kamata M (2017) Discography aids definitive diagnosis of posterior epidural migration of lumbar disc fragments: case report and literature review. BMC Musculoskelet Disord 18(1):151

- 103. Tarukado K, Tono O, Doi T (2014) Ordinary disc herniation changing into posterior epidural migration of lumbar disc fragments confirmed by magnetic resonance imaging: a case report of a successful endoscopic treatment. Asian Spine J 8(1):69–73
- Tarukado K, Ikuta K, Fukutoku Y, Tono O, Doi T (2015) Spontaneous regression of posterior epidural migrated lumbar disc fragments: case series. Spine J 15(6):57–62
- Tatli M, Güzel A, Ceviz A, Karadağ O (2005) Posterior epidural migration of sequestered lumbar disc fragment causing cauda equina syndrome. Br J Neurosurg 19:257–259
- Teufack SG, Singh H, Harrop J, Ratliff J (2010) Dorsal epidural intervertebral disk herniation with atypical radiographic findings: case report and literature review. J Spinal Cord Med 33:268–271
- 107. Toktaş ZO, Yilmaz B, Konya D, Yapicier O, Demir MK (2016) Posterior epidural migration of lumbar disc fragment as an unusual ring-enhancing mass. Spine J:e31–e32
- Tsuji H, Hirano N, Ohshima H, Ishihara H, Terahata N, Motoe T (1993) Structural variation of the anterior and posterior anulus fibrosus in the development of human lumbar intervertebral disc. A risk factor for intervertebral disc rupture. Spine (Phila Pa 1976) 18:204–210
- Turan Y, Yilmaz T, Gocmez C, Ozevren H, Kemaloglu S, Teke M, Sariyildiz MA, Ceviz A, Temiz C (2015) Posterior epidural migration of a sequestered lumbar intervertebral disc fragment. Turk Neurosurg 27(1):85–94
- Turan Y, Yilmaz T, Gocmez C, Ozevren H, Kemaloglu S, Teke M, Sariyildiz MA, Ceviz A, Temiz C (2017) Posterior epidural migration of a sequestered lumbar intervertebral disc fragment. Turk Neurosurg 27(1):85–94
- 111. Türkoglu E, Karavelioglu E, Oral N, Metin Sanli Ahmet SZ (2013) Cauda equina syndrome due to posterior squestered lumbar disc herniation: a rare case report and MRI findings. J Turkish Spinal Surg 24:165–168
- 112. Vernon-Roberts B, Moore RJ, Fraser RD (2007) The natural history of age-related disc degeneration: the pathology and sequelae of tears. Spine (Phila Pa 1976) 32(25):2797–2804
- Videman T, Battié MC (1999) The influence of occupation on lumbar degeneration. Spine (Phila Pa 1976) 24(11):1164–1168
- 114. Walsh AJ, Martin Z, McCormack D (2004) Cauda equina syndrome seconday to posterior epidural migration of a lumbar disc fragament: a rare phenomenon. Eur J Orthop Surg Traumatol 14: 30–31
- Yoo YS, Il JC, Kim SW, Kim DM (2015) Posterior epidural migration of an extruded lumbar disc mimicking a facet cyst: a case report. Korean J Spine 12(1):12–14